Saturday, October 31, 2009

Outlook and obstacles for CCS in China


He Gang
October 23, 2009


http://www.chinadialogue.net/article/show/single/en/3294



China needs carbon capture and storage technology to decrease its emissions from coal power, but the transition will be costly and difficult. In the first section of a two-part report, He Gang surveys an energy dilemma.





“These advanced technologies are integral to future energy strategy. This is important not only for China, but also for other nations who can gain valuable lessons from the country's experiences.”




Related articles





Carbon capture and storage (CCS), a technology that stops carbon dioxide produced by coal plants being released into the atmosphere, is essential in order to cut carbon emissions and thus mitigate the impacts of climate change. Accordingly, China’s ministry of science and technology already has a range of CCS technology projects underway. CCS has also featured prominently in the government's National Outlines for Medium and Long-term Planning for Scientific and Technological Development (2006-2020), the National Climate Change Programme and other national plans on basic and high-technology research and development. 

Existing demonstration projects include: the GreenGen project, which is a joint initiative by Huaneng and major state-owned energy giants, combining integrated gasification combined cycle (IGCC) technology with CSS; Shenhua’s coal-to-liquids and CSS project in Ordos; Huaneng’s post-combustion capture project in Gaobeidian in Beijing; and a new project in Shidongkou, in Shanghai. 

China is also engaged in international partnerships, such as the UK-China NEZC initiative and Cooperation Action with CSS China EU (COACH). China also participates in the United States-led Carbon Sequestration Leadership Forum and is a part of the FutureGen Alliance. Cooperation agreements are also underway with Japan and Australia. 

China is carrying out research, development and demonstration of CCS technology, but it is still at an early stage. According to predictions by the International Energy Agency, by 2050 CCS will provide 14% of the emission reduction required to stabilise the climate, 20% to 25% of which will come from China, with 60% of those cuts coming from the installation of CCS technology in power plants. 

Given China’s circumstances and strategic needs, our most pressing task is to make preparations for CCS technology and policy. 

The importance of CCS 

China is a coal-rich country, but lacks oil and gas. According to BP, the country has 114.5 billion tonnes in its coal reserves, about 13.5% of the global total, compared to 2.1 billion tonnes of oil and 66.54 billion cubic metres of natural gas, accounting for 1.3% and 1.1% of the world total respectively. 

In 2008, China imported 179 million tonnes of crude oil, meaning it relies on imports for 49.8% of its oil consumption. This reliance is increasing. Rocketing oil prices in 2008 gave coal-to-liquids technology a boost, with experts predicting that by 2020, China will be able to produce the equivalent of 35 million tonnes of oil with this method: enough to replace about 25% of oil imports. 

However, coal-to-liquids technology is also a significant producer of greenhouse gases, and it will be necessary to reduce those emissions. Therefore, the combination of CCS with coal-to-liquids will be important. 

IGCC technology currently achieves 40% to 43% efficiency, and can achieve as high as 50% efficiency. Although the costs are higher than that of super-critical or ultra-super-critical turbines, taking CCS costs into account gives IGCC a clear advantage. Also, IGCC reduces pollutants such as nitrogen oxides and sulphur. IGCC is expected to contribute significantly to energy security, though still with some risks due to high costs and technological uncertainty. 

These advanced technologies are integral to future energy strategy. This is important not only for China, but also for other nations who can gain valuable lessons from the country's experiences. 

If China uses its late-starter advantage and quickly masters proprietary manufacturing and innovations, it will find advantages in manufacturing costs, personnel and capital, potentially becoming a new centre of manufacturing and exporting. 

CCS is a wide-ranging area, covering chemical, power-generating and geological fields. The research, development and demonstration of the technology will lead to rapid progress and technological innovation in these fields. 

Obstacles 


The costs of capturing carbon are huge. Research from Energy Technology Innovation Policy, at Harvard University in the United States, found that carbon capture alone (not taking into account transportation or storage, for instance) in a first of a kind power plant would cost US$100 to $150 per tonne of carbon that is abated, increasing the cost of power by US$0.10 per kilowatt-hour in comparison to a super-critical pulverised coal plant. Using mature technology, the costs would be approximately US$30 to $50 per tonne of carbon abated. The Special Report on Carbon Dioxide Capture and Storage from the Intergovernmental Panel on Climate Change (IPCC) shows that the addition of CCS technology increases electricity generation costs by 40% to 80%. So, although combining IGCC and CCS can reduce the costs of CCS, the overall costs of electricity generation will still increase 40% to 60%. 

China’s potential for geological carbon sequestration is huge – but not currently quantified. Joint research by the Pacific Northwest National Laboratory in the United States and the Wuhan Institute of Rock and Soil Mechanics at the Chinese Academy of Sciences calculated a theoretical capacity to store 2,300 billion tonnes of carbon. By calculating distances between potential storage sites and 1,620 major emissions sources, the cost of transportation and storage (not including capture) was estimated to be below US$10 per tonne of carbon. 

Due to China’s complex geology, there is uncertainly over carbon sequestration. Of the storage methods currently being investigated, CO2 enhanced oil recovery (EOR) and enhanced coal bed methane recovery (ECBM) have the greatest potential, due to the potential for profits. 

Public acceptance of CCS also impacts on the feasibility and risks of its adoption. Vattenfall’s first CCS demonstration project at Schwarze Pumpe in north Germany had to be abandoned due to public opposition, with the carbon captured pumped straight back into the atmosphere. 

Furthermore, the IPCC special report on CCS shows that the addition of CCS reduces the efficiency of coal-burning power generation by 20% to 30% due to energy penalties: a plant operating at 40% efficiency would be reduced to between 25% and 30% efficiency. 

In China, the cost of post-combustion capture in power plants would be US$130 per tonne of carbon abated, increasing generating costs by 20% to 30% and reducing efficiency by 8 to 10 percentage points. Therefore, the addition of CCS will require the burning of roughly 25% more coal in order to generate the same quantity of electricity. In 2008, China burned 2.72 billion tonnes of coal, 1.18 billion tonnes of which was used in power generation. If CCS was added to all of China’s power plants, an extra 290 million tonnes of coal would be required to generate the same amount of electricity. 

The cost of that extra coal consumption will be passed on through the entire coal industrial chain: to personnel, capital, road, rail and water transport, as well as in coal mining, transportation and storage. Factoring these expenses into the overall cost, it is clear that even greater pressure will be exerted on a coal industry already stretched to the limit. And costs would be even higher if “externalities” such as environmental impacts and safety were considered. So, calculating the costs of CCS can not be restricted to the costs of installing and running the technology: the extra costs the energy system will incur as a result of CCS must be considered. 

The price of coal itself accounts for 80% of the costs of generating electricity, hence power plants are very sensitive to changes in the cost of coal. Low margins in the power sector mean it cannot absorb the costs of CSS. Although China's coal sector is gradually starting to operate on market principles, the power industry is still very much under central control. The state has introduced some changes in pricing, but electricity prices are still managed in order to ensure economic growth and social stability. 

According to the China Electricity Council, increases and fluctuations in the price of coal last year caused losses for power generators of 70 billion yuan (US$10.3 billion), 40 billion yuan (US$5.9 billion) of which was lost by the five major power firms alone. Therefore, power companies are unable to pass the increase in coal costs on to consumers, much less the costs of CCS. 

This is a crucial time for energy saving and emissions reduction, as well as a stage of rapid development in hydro, solar, nuclear and other new energy sources. In 2008, wind power generation capacity increased from 0.76 gigawatts to 13.24 gigawatts. Increasing that to the target of 30 gigawatts will require over 1 trillion yuan (US$146 billion) in investment. For solar power to reach its target of 10 gigawatts, there will need to be around 300 billion yuan (US$44 billion) in investment. Furthermore, the country needs 750 billion yuan (US$110 billion) to achieve its aim of having 5% of all electricity generated by nuclear power by 2020. 

The National Energy Administration predicts that China needs 2.5 trillion yuan in investment to meet the target of drawing 16% of all power from renewable sources by 2020. CCS will have to compete with these new energy sources for funding. New energy fits in with China’s future overall energy strategy; it will have knock-on effects in terms of upgrading industrial capacity and increasing employment. Therefore, it should be the focus of investment. Currently, there are huge opportunity costs associated with widespread implementation of CCS.

The implementation of CCS in China faces the same obstacles it does globally: issues that arise from the costs, the storage, the risks and the uncertainties. But the coal-and-electricity relationship in China means that the costs of CCS cannot be passed on to end-users with higher prices; the extra expenses will have to be absorbed by the entire energy system. 

Therefore, if CCS is to be implemented on a large scale in China, international climate-change mechanisms will need to take financing into account. Without stable external sources of funding, CCS is unlikely to be a priority for development in the short term. The more closely international climate policy is aligned with China’s own incentives and the unique context of its coal and power markets, the better chance it will have of realising the optimal role for CCS in global climate efforts. 


http://www.chinadialogue.net/article/show/single/en/3296



In the final segment of his two-part report, He Gang sets out his technical and policy recommendations for China's adoption of an important technology.





“China’s geology is complex; the country needs to conduct more surveys of on-shore and off-shore coal, oil, gas basin and salt formations that have the potential for carbon sequestration.”




Related articles





Considering China’s circumstances and strategic requirements on the energy front, discussed in theprevious section of this article, there are three aspects of the situation that need attention if the country is to make the technical and policy preparations for CCS. 

First, China needs more more capacity building: 

* CCS technology is not yet mature. China needs to focus on research-and-development, particularly with attention to the country's energy security; hold demonstrations of coal-to-liquids, IGCC and CCS technology; explore the economic sustainability of enhanced oil recovery and enhanced coal-bed methane; and analyse and evaluate future CCS technological pathways. 

* China’s geology is complex; the country needs to conduct more more surveys of on-shore and off-shore coal, oil, gas basin and salt formations that have the potential for carbon sequestration. Comprehensive surveys of geological structure, storage potential, the risk of leakages and the feasibility of monitoring are necessary. 

* There needs to be risk evaluation and management for all stages of CCS: capture, transportation and storage. 

* China must establish CCS management structures, laws and regulations. 

* China needs to increase public awareness of CCS, which means increasing public knowledge of the value and the risks of the technology. 

Second, sources of funding should be expanded. Currently, fund transfers mainly take place via the international carbon market. As the funds available for CCS in China are very limited, international financial investment and support are very important. 

The Clean Development Mechanism (CDM) is one of the Kyoto Protocol’s three mechanisms, and is a key part of encouraging developing nations to participate in global emission reductions. Currently, its executive board has raised the possibility of allowing CCS projects under the CDM. This is still highly controversial; opponents hold that CCS emissions reductions will weaken the effectiveness of the CDM’s market in Certified Emission Reductions (CERs). 

In the current market, carbon dioxide (CO2) costs between 8 and 23 Euros (US$12 to $34) per tonne: much less than the cost of CCS (from 50 to 100 Euros, or US$75 to $150, per tonne of CO2). Even if CCS were included as a CDM project, there would be a significant price gap, which means CCS would have to be funded through other channels. 

The fluctuating price of CERs also means that CCS will struggle to attract stable investment through this channel. Sectoral emissions reduction mechanisms may bring the power sector as a whole into emissions reduction arrangements, but this is still at an exploratory stage. Therefore, an international climate-change agreement must find new financial mechanisms to meet the needs of CCS implementation. 

Third, we must strengthen international cooperation. International probes into CCS are still underway. The United Kingdom has legislated that new power plants must be “carbon-capture ready” if they are to connect to the power grid. The United States has announced an investment of US$1 billion to restart the FutureGen project, and is to build an IGCC+CSS demonstration plant in the mid-western state of Illinois. The European Union’s economic stimulus plan includes 1.05 billion Euros (around US$1.6 billion) in investment for CCS technology at seven power plants, with a “CCS Alliance” of 12 demonstration plants to be formed by 2012. In July 2009, China and the US announced plans to develop the “US-China Clean Energy Research Center”. 

As cooperation between China and the US, Canada, the EU, Japan, Australia and other countries continues in the CCS field, China will form global links to the CCS industry, remain up-to-speed with technical advances and exchange know-how. This will lay the foundations for China to master the technology – and participate in the global effort to address climate change. 


For more information, download the full report 
Real Drivers of CCS in China and Implications to Climate Change Policy by Richard Morse, Varun Rai and Gang He. 

He Gang is research associate at Stanford University’s Program on Energy and Sustainable Development. ghe at stanford.edu 


 

碳捕获与碳储存发展的障碍与展望


何钢 


2009年10月23日


http://www.chinadialogue.net/article/show/single/ch/3296



中国需要碳捕获和储存技术以减少燃煤电厂制造的碳排放。然而这场过渡势必耗资巨大且困难重重。在何钢关于中国CSS发展报告的第一部分,他研究了其中存在的能源困境。





“其中与未来能源战略密切相关的煤制油技术、IGCC等先进发电技术,不仅对于中国有着重要战略意义,也为其他国家提供了可借鉴的技术经验。”




相关文章



碳捕获与碳储存发展的障碍与展望 (二) 
2009年10月26日


大力推动碳捕获 
2008年10月15日


捕碳者 
2008年10月14日




国际气候政策越符合中国自身的激励机制及特殊的能源背景,越能有效发挥CCS在中国的积极作用。要在中国大规模发展CCS,国际气候制度必须考虑如何为其融资。 

在中国发展CCS,除了面临成本过高和储存不确定的风险与障碍外,中国煤电结构也使得CCS的成本无法通过提高电价从而转嫁给终端用户,而且整个能源系统还将负担起由于能源损失增加的成本。 

CCS是大量减少温室气体排放以减缓气候变化带来的威胁的必要手段。煤炭是世界上增长最快的能源,煤炭燃烧也是全世界最大的温室气体排放来源。中国的能源消耗严重依赖煤炭。虽然国家已经采取了强有力的措施发展清洁可再生能源,“以煤为主”的能源结构短期内仍难以改变。煤炭作为基础能源,对保障能源的供应起到了非常重要的作用,但是煤炭燃烧释放的温室气体也给气候变化挑战带来了世界性的难题。2008年,中国煤炭生产总量达27.2亿吨,电力生产的80%来自煤炭,全国CO2排放量达68亿吨,均居世界第一。据国际能源署(IEA)的预测,到2050年,CCS约可提供稳定气候所需要减排量的14%,而世界CCS减排量的20-25%将来自中国,这当中60%将依靠CCS在发电厂的应用。 

目前,CCS在中国仍处于研究、开发和示范阶段。科技部开展了一系列针对CCS的研究课题。《国家中长期科技发展规划纲要(2006-2020)》、《中国应对气候变化国家方案》、国家863计划及973计划都把CCS作为研究和开发的重要内容。已有的示范项目包括探索整体煤气化联合循环发电(IGCC)+CCS技术路线的华能“绿色煤电”项目;探索煤制油(CTL)+CCS的技术路线的神华鄂尔多斯煤制油项目,以及探索燃烧后捕捉的技术路线的华能北京高碑店和上海石洞口碳捕获项目 等。与此同时,中国也开展了广泛和深入的国际合作。如中英近零排放发电(NEZC)和中欧CCS合作项目(COACH)。中国参加了美国主导的碳收集领导人论坛,并加入未来发电的计划。中日、中澳也在积极推进相关领域的合作。 

CCS对于中国能源战略的重要意义 

中国是一个“多煤少油少气”的国家。在中国一次能源生产和消费构成中,煤炭所占比例高达三分之二以上。虽然近年来可再生能源和清洁能源的比重有所提高,但专家预测到2050年,煤炭在能源中的比例仍将占50%以上。据BP能源统计综合中国能源储量数据,中国约有1145亿吨煤炭储量,约占世界煤炭总储量的13.5%;而石油储量仅21亿吨,天然气储量仅665.4亿立方米,分别占世界总储量的1.3%和1.1%。这种能源基础决定了在相当长一段时间内,煤炭仍将在总体能源中占有重要的地位。而且由于经济的快速发展和能源消耗的迅猛增长,温室气体排放也大量增长。 

2008年,中国进口1.79亿吨原油,石油对外依存度达49.8%,进口金额达190亿美元,石油的对外依赖度越来越高。而煤制油(CTL)技术也随着2008年油价的攀升也一度受到了热捧。专家预测,到2020年,煤制油技术预计可生产石油3500万吨,当前每年石油进口约为1亿吨,2020年石油进口将达到1.5亿吨,煤制油可替代进口石油的25%左右。虽然煤制油的前景仍受到石油价格、水资源、煤炭价格和技术风险及成本等因素的制约,但对于中国的能源安全仍具有十分重要的战略意义。与之同时,煤制油过程也是温室气体排放相对集中的过程,在煤制油过程中减少温室气体的排放是必然要求,同时也为之提供了相对广阔的空间。CTL+CCS因之也成为重要的发展技术路线。 

2006年开始,国家提出“十一五”能源效率提高20%,主要污染物排放减少10%的目标,并采取强力措施推进“节能减排”战略,而这些目标的实现,主要依赖电力、钢铁、水泥等高耗能行业的节能目标的实现。其中之一就是发展清洁煤技术,提高发电效率并减少排放。目前,IGCC技术的效率可达到40-43%,最高效率可达50%,虽然较超临界、超超临界技术成本要高,但如果把CCS的成本也考虑在内,IGCC将具有非常显著的优势。而且IGCC在减少SOx、NOx等污染物上也具有较好的表现。IGCC技术路线仍然有较大的不确定性,但从能源战略角度考虑仍占有重要地位。 

国家把技术创新作为能源发展的战略措施之一。目前,中国拥有自主知识产权的发电技术已越来越多,但一些核心技术如气化炉、耐高温高压的材料等方面仍主要依赖进口。CCS是未来能源发展和气候保护的重要储备技术,因此在应对气候变化的共同愿景下,国际机制的设计也有利于该技术的转让与合作。其中与未来能源战略密切相关的煤制油技术、IGCC等先进发电技术,不仅对于中国有着重要战略意义,也为其他国家提供了可借鉴的技术经验。如果能利用后发优势并迅速掌握拥有独立知识产权的技术生产和创新能力,中国凭借在制造成本、人力资源、资本动员等方面的优势,将来很可能成为相关技术的新制造中心,创造技术出口机遇。同时,CCS是一个很庞大的系统工程,涉及化工、发电、地质等诸多领域。CCS的研究、开发和示范,将会引导化工、发电、地质等领域技术获得突飞猛进的发展,从而带动一大批相关领域的科技创新。 

CCS规模化发展的障碍 

碳捕获成本高昂。哈佛大学能源技术政策小组一项最新的研究表明,相对超临界电厂,仅碳捕获(不包含运输和储存)一项,先锋电厂成本就高达100-150美元/吨,电力价格将增加10美分/千瓦时;技术成熟后成本约为30-50美元/吨。IPCC关于CCS的特别报告研究表明,增加CCS将使燃煤发电成本提高40-80%。也就是说,IGCC+CCS虽然能减少CCS的成本,却会使发电总体成本增加40-60%。 

中国的地质储存潜力虽然很大但有不确定性。美国太平洋西北国家实验室和中国科学院武汉岩土力学研究所一项研究表明,中国理论上拥有地质储存潜力达2.3万亿吨,通过计算中国1620个主要排放源与潜在地质储存的距离,初步估计运输和储存的成本约在10美元以下,但这个不包含捕获成本。由于中国的地质条件相对复杂,储存条件不确定性较大,目前正在探讨的储存方式中,通过CCS增加石油采收率(EOR)和提高煤层气采收率(ECBM)因为能带来经济收益所以具备较大潜力。 

CCS 的风险包含在二氧化碳捕获、运输和储存各个环节的风险,如资金成本、技术风险、管制的不确定性、碳储存的泄漏风险等,因此必须加强这些过程的风险管理。此外,公众对CCS的接受程度也直接决定了采用CCS的可能与风险。大瀑布电力公司曾在德国北部进行了全球第一个碳储存的示范项目——施瓦茨碳储存项目,却因为地方居民的强烈反对,不得不取消而直接将已经捕获的CO2重新排放到大气中去。 

IPCC关于CCS的特别报告研究表明,增加CCS将使燃煤发电效率损失20-30%,以一个效率为40%的电厂为例,增加CCS将使其效率损失达10-15个百分点(即增加CCS 后的同等电厂效率仅为25-30%)。对于中国而言,发电厂运行燃烧后捕获,碳捕获的成本约为130美元,发电成本将提高20-30%,同时其效率将损失约为8-10个百分点。因此,要生产同样多的电力,CCS相对于无CCS的条件要多消耗约25%的煤炭(取20-30%的均值)。依此计算,2008年中国的煤炭用量为27.2亿吨,其中用于发电约为11.8亿吨,假如所有电厂全部安装CCS,要生产同等的电力,约需要在此基础上增加煤炭达2.9亿吨。增加的煤炭消耗的成本还将通过煤炭的产业链条扩散到整个能源系统,包括煤炭的生产、运输、储存、转运所需的人力、资本、铁路、港口、船舶等。把增加煤炭消耗计入成本,将给本已超常规生产和超容量运载的煤炭系统增加额外的负担和成本。如果考虑煤炭生产、运输环节的外部成本(如环境、安全和生态影响),这一数字将更高。因此,在考虑发展CCS的成本时,不能只考虑CCS技术建设和安全以及在CCS实际发生的成本,还应系统考虑能源系统为此增加的成本。 

煤炭约占电厂成本的80%,因此煤炭作为电厂的主要成本,对煤炭的消费将非常敏感。而由来已久的煤电矛盾使电力系统很难消化CCS增加的成本。中国的煤炭已 经逐渐市场化,而电力则仍然处在高度中央控制的改革阶段。虽然国家也尝试通过建立“煤电联动”机制理顺煤电矛盾,但由于电价的基础性作用,国家为保障经济 发展和社会稳定,电价仍然由国家协调规划。据中国电力企业联合会统计数据显示,由于煤炭价格的上涨与波动,2008年电力企业全行业亏损700亿元,仅五大电力集团亏算就达400亿元。这意味着电力企业无法通过简单提高电价的方式把煤炭价格提高增加的成本转嫁给消费者,更不用说转移CCS的成本了。 

当前是节能减排的关键时期,也是水电、太阳能、核电等新能源发展最为快速的阶段,2008年,风电装机容量从2004年的0.76GW增长到13.24GW,要实现规划的30GW的目标,需要投资1万亿以上。太阳能发电规划要到达10GW,约需要投资3000亿元。核电要达到2020年5%的目标,约需要投资7500亿元。国家能源局预测,要实现国家关于2020年可再生能源达到16%的目标,预计将需要多达2.5万亿的投资规模。而规模化CCS势必和新能源争夺投资资源。新能源符合中国未来的总体能源战略,且具有增加就业、提升产业等溢出效应,应作为投资的重点领域,当前规模化发展CCS 隐含了昂贵的机会成本。 

从上述分析可以看到,CCS在中国要规模化发展,除了面临CCS在全球普遍面临的成本、储存、风险和不确定性障碍外,也不能忽视中国特定的能源结构和煤电矛盾等因素造成的困难,在没有稳定的外部资金来源支持的情况下,CCS短期内难以成为中国的优先发展领域。国际气候政策的设计越符合中国自身的兴趣并考虑中国独特的能源政经条件,共同发展CCS应对气候变化就越有效。 


http://www.chinadialogue.net/article/show/single/ch/3294





在报告的第二部分,何钢为中国应对这项重要科技应采用的技术和政策提出了自己的建议。






“中国的地质条件相对复杂,对于可能作为碳储存的含煤盆地、含气盆地、含油盆地和深层盐构层等陆地和近海盆地结构,应加强地质调查研究”




相关文章



碳捕获与碳储存发展的障碍与展望 (一) 
2009年10月23日


大力推动碳捕获 
2008年10月15日


捕碳者 
2008年10月14日




一些研究和政策要求在中国规模化发展CCS,却往往忽略了中国的现实条件,结合中国的实际情况和战略需要,现阶段做好CCS技术与政策的相关储备成为当务之急。 

首先,加强能力建设。第一,分析和评估CCS技术路线。CCS技术目前还未臻成熟,因此,需要对中国未来能源战略有着重要影响的煤制油、IGCC等技术及其CCS技术进行重点研发与示范。对于中国未来CCS技术路线进行分析与评估。第二,加强碳储存的研究。中国的地质条件相对复杂,对于可能作为碳储存的含煤盆地、含气盆地、含油盆地和深层盐构层等陆地和近海盆地结构,应加强地质调查研究,对于地层结构、储存潜力、泄漏风险、监测可能等方面进行全面调查与评估。第三,增强风险管理的能力。对于CCS技术的各个环节捕获、运输和储存过程中的风险进行系统评估和管理。第四,建立CCS治理结构和相关法律法规。最后,促进公众参与CCS的研究,通过宣传教育,加强公众对于CCS及其价值与风险的了解。 

其次,拓宽资金来源。由于当前国内能用于CCS的资金非常有限,国际资金的投入和支持显得非常重要,目前资金转移也主要通过国际碳市场来实现。清洁发展机制(CDM)作为京都三机制之一,在激励发展中国家参与全球减排行动中发挥了重要作用,目前执行委员会(EB)正在讨论把CCS纳入CDM项目的范畴,但争议仍然非常大,反对者认为CCS可能产生的减排量将削弱CDM机制下经核证的减排量(CER)市场的有效性。即使把CCS纳入到CDM的项目范畴中,在现行的市场下,CO2 的价格是8-23欧元/吨,远低于CCS的成本(50-100欧元/吨),每吨缺口仍达30-60美元,必须通过其他手段来筹集CCS所需要的资金。此外,CER价格的浮动也使得CCS更难以吸引稳定的投资者。而行业减排机制,虽然有可能把电力行业作为整体纳入碳减排的安排,也仍在研究和探讨中。因此,国际气候变化协议必须寻求新的金融机制以满足CCS规模化发展的需要。 

第三,深化国际合作。国际上对于CCS的探索仍在继续:英国通过新的立法,要求新建电厂项目必须安装CCS,否则将不允许上网。美国将投入10亿美元重启“未来发电”(Future Gen)项目,并将重点建设在伊利诺伊州的IGCC+CCS示范电站。欧盟经济振兴计划将10.5亿欧元投资用于7个电厂的CCS发展,并将在2015年建立一个具备12个示范电厂规模的CCS联盟。中国和美国也于2009年7月份提出建立中美联合清洁能源中心。随着中美、中加、中英、中欧、中日、中澳等双边或多边气候变化合作的CCS领域进一步深化,中国将与全球CCS同行建立联系、跟踪进展、了解动态、交流问题与经验(Know-how),为中国掌握 CCS技术并参与全球应对气候变化挑战的努力奠定基础。


欲获取更多的详情,请点击下载Richard Morse, Varun Rai及Gang He合作的研究报告全文:《Real Drivers of CCS in China and Implications to Climate Change Policy 

何钢:美国斯坦福大学能源与可持续发展研究中心助理研究员。联系方式:
ghe at stanford.edu 

一个“疯狂的外国人”

一个偶然的机会,我们成了倪德卫(David Nivison)教授的房客。Nivison教授号称是“N”大汉学家之一,N等于几取决于比较的范围和定义的程度。教授对中国历史、文化、哲学,当然还有中国菜,不止是非常感兴趣,而是颇有研究,这不仅让我们有了一个安静的居处,也让我们的晚餐时间多了很多乐趣。此文作为榆木斋的一个补录,相信还会有很多“故事”。

 

 动情之“Life is real”!

第一次见面,或者也可以说是面试,是在他家里,吃完晚饭,他问我们结婚多久了,然后突然深情地回忆起他的太太,或者他问我们就是想介绍他太太给我们。他和太太44年结婚,直到08年去世,一起走过了64年的风风雨雨。64年,他说“Life is real”!这是他每每想起太太的深情。他还曾说起过,在家里其实也很想讲他的研究,可是大概没有多少愿意听他的,太太也许也是,直到有一天他的太太过世前夕,也是他的新书付梓的时候,他太太听到他的书快出来,宽慰的微笑才满足的睡去,而他也深受感动。我永远都忘不了那低头的沉吟,良久,或者是一滴泪润散的时间。而这一天竟然是中秋,难道是巧合?

 

汉学家之“Crazy foreigner

我其实很好奇他做的研究,他有两本书,一本书是《章学诚的生平及其思想》,另一本是《西周诸王年代研究》;前者是他的博士论文,后者是他后半辈子的研究。他说他做的有些研究是从甲骨文、金文等来定时间。所以只有像他这样的“Crazy foreigner”才会对这些感兴趣。他说他爱中国,除了“断代工程”。因为据说组织了很多专家做了4年,但是对他提出的一些问题却没有回答。那么遥远的历史,大概要很严谨的考证和反复的验证才能有一些猜测,这是我学历史一直没学明白的地方。他是洪业和杨联升的学生,杨联升还有一个学生,可能大家都知道,就是余英时。而他在哈佛的时候,周一良正在哈佛读研究生,周的太太是他太太的中文老师,这个世界真是很有趣。

 

如果我收到那封信

有一次晚上吃饭的时候教授突然说起他在翻读50-60年代的信件,他妈妈将他和许多人的通信保留得很好并在走之前交给了他。他说第一次看到他岳父写给他的一封信,不知道什么原因,他从来没有见过。而现在读到非常震惊,信中给了他很多建议,包括继续读拉丁文和古典研究,说战后这些研究一定会复兴;还包括对中文和日文的看法。教授认为他建议的不读中文、日文是错的,但是前面一点是对的,如果听从了他的建议,他太太的人生也许会好一些,而他的人生也会完全不一样,因为确实战后这些研究都复兴了。而其实他也很顺利,哈佛毕业就到了斯坦福,一干就是一辈子。我从来没有觉得他如此“懊恼”,或者是回顾人生的一种遗憾,或者是对他太太过于思念和爱怜。我不知道我老了会不会有类似的遗憾,但这个时候我还是装着很镇静的安慰他,我们都说“上帝关上一扇门,他一定会给你留一扇窗”,但有时为了给你开一扇窗,他也许会先关上某扇门。

 

 找到了人生后三十年要做的事情

教授聊起来他的研究,少不了一些tipping point,人生最关键的也许就那么几步。他回忆说刚到斯坦福的时候,学校让他教一些他不喜欢的课。后来他一个伯克利的朋友,也是个历史学家,跟他介绍起中国的夏商周断代的问题,他突然就觉得他找到了人生后三十年要做的事情了。我不知道他是怎么学习甲骨文,怎么从历史的堆里找到那些散碎的资料,怎么连贯和佐证相关的证据。他研究的一些结论是夏朝的存在有不确定性。谈到中国学者说他的研究,提到有一篇文章只遮掩的说“国外有学者有其它的说法,但还缺乏证据”。他说,他要一本书来证明自己的观点。对不懂的东西,只听而已。不过,我不怀疑学者的真诚,毕竟,谁愿意押上自己一辈子的时间。我有时候会想他做那个决定的那时的心情。

 

 80年代的中国

教授偶尔也会给我们将他在中国的经历,有一次去太原开会,会后一个农民家看到梨子,就想买一些尝尝,结果比划了半天,农民伯伯终于知道他想干什么的时候,才发现自己已经被一群农民兄弟围着,那时候,中国更别说农村,还没有几个见过外国人的。还有一次去爬泰山,在一家餐厅吃饭的时候被一个年轻人瞪,他也瞪着那个年轻人,尴尬了一会,他对着年轻人说,“你吃了吗?”年轻人听到后嘴角的笑让他至今想起来还印象深刻。既然是中国,自然是少不了中餐,他和他的太太刚开始学习做中餐的时候,他说就是把中餐的原料放到一起,就装作自己在做中餐了。

 

那些汉学家们

除了倪德卫,我还想起一些飘过的汉学家们,对他们的学问是没有什么可评价的,因为基本上不懂,可是对他们的中文名字的喜欢度,也许可以做一个排名:费正清(John King Fairbank)、史景迁(Jonathan D. Spence)、马悦然(Göran Malmqvist)、罗思高(Scott Rozelle)、施寒微(Helwig Schmidt-Glintzer)、季北慈(Bates Gill)、李约瑟(Joseph Terence Montgomery Needham)。说到李约瑟,想起来唐晓峰老师的课,我选了林毅夫老师主讲的题目“李约瑟之谜”,唐老师在我讲完后就问了一个问题,李约瑟是什么,我一时语塞,现在想来,充分说明了无知者还无畏是多么可怕的事情。